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An on-line and an off-line version of a computationally efficient particulate matter source

apportionment algorithm have been developed and compared using the three-dimen-

sional chemical transport model PMCAMx. Both versions of the algorithm use source

specific-species that track the contributions of source locations or source classes. The two

versions showed a good agreement with each other and with more accurate,

computationally demanding methods. The off-line algorithm (Particulate Source

Apportionment Technology, PSAT) is simpler to implement, has a lower computational

cost and is suitable for a range of source apportionment studies. As a first application,

PSAT was used to investigate the contribution of power plant SO2 emissions to particulate

sulfate concentrations in the Eastern United States. The impact of the transport of SO2

emissions from the Chicago, IL area and the impact of these emissions on particulate

sulfate concentration in surrounding areas were also studied as a second application. The

implementation of PSAT for the SO2/particulate sulfate system only resulted in a 1%

increase in computation time over the base simulation. The algorithm provides a

computationally efficient platform for the study of pollutant transport and source

contributions on regional scales.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

High concentrations of particulate matter (PM) result
in human health problems (Dockery et al., 1993; Schwartz,
1999; Kunzli et al., 2000; Klemm et al., 2000), visibility
deterioration (Ying et al., 2004), damage-sensitive eco-
systems and play a key role in the energy balance of our
planet (Seinfeld and Pandis, 1998). In order to effectively
All rights reserved.

emical Engineering,

ittsburgh, PA 15213,

andis).
regulate emissions of PM and its precursors, it is necessary
to understand the contributions of source classes
(i.e., source types or locations) to PM concentrations in
different locations (EPA, 2005). Chemical transport mod-
els (CTMs) provide a useful platform for the study of
source contributions to both secondary and primary
pollutant concentrations because they explicitly simulate
the corresponding atmospheric processes: emissions,
transport, removal, chemistry, and aerosol physics.

There have been several applications of PM source
apportionment schemes to CTMs. The simplest approach
is known as the brute-force method where impacts of
sources are quantified by perturbing emission sources
one-by-one, and calculating the changes in pollutant
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concentrations resulting from the perturbation. This
method is computationally inefficient because it requires
running the model separately for each parameter and for
each perturbation of interest. The brute-force approach
quantifies the direct and indirect effects of an emissions
reduction, that is, what would happen to the pollutant of
interest and all other pollutants if the emission rate of that
source was changed to zero (or to another value). This
information is useful for the final design of emission
control strategies. For non-linear systems, this informa-
tion, is different than the current contribution of this
source to the pollutant concentrations in the given
receptor area (Seinfeld and Pandis, 1998; Blanchard,
1999). The direct decoupled method (DDM) can be used
to study the local sensitivity of pollutant concentrations to
changes in different input parameters, including emis-
sions (Dunker, 1981). DDM is relatively computationally
efficient (Hakami et al., 2003) but only provides local
derivatives of contributions which may or may not be
applicable for large (e.g., above 50%) perturbations
(Dunker et al., 2002). McHenry et al. (1992) developed
the Tagged Species Engineering Model (TSEM) to examine
source–receptor relationships for particulate sulfate using
output data from the Regional Acid Deposition Model
(RADM). TSEM tracks five chemical species—all related to
SO2 and particulate sulfate concentrations. Lane et al.
(2007) developed a source-resolved model to track source
contributions of primary PM which involves splitting the
emission inventory into n inventories, one for each source,
and the simulation is repeated n times, once for each
source. This simple technique cannot be applied to
secondary species as chemical reaction rates are often
non-linear with respect to species concentrations.

The most accurate approach for tracking source
contributions is the source-oriented external mixture
(SOEM) method described by Ying and Kleeman (2006).
SOEM divides each pollutant of interest into different
source-specific species and tracks these source specific-
species separately through the model. SOEM has the
ability to accurately track source contributions to pollu-
tant concentrations since its only assumption is that all
PM species can be traced back to a specific precursor
gas species or primary PM component. This method is
computationally demanding since it requires the
solution of an increasing number of stiff, coupled
differential equations for each time step in the gas and
aerosol chemistry modules and also, more importantly,
an increased number of species in the aerosol calculations
depending on the number of sources to be tracked since a
separate set of species must be used for each source.
Also adding to the computational demand, SOEM uses
dynamic calculations and an externally mixed aerosol, a
more thorough approach than the equilibrium approach
used in this work but also much more computationally
demanding. Another important factor that strongly im-
pacts the required computation time is the number of
aerosol size bins in the size distribution. To track
contributions of ten source classes to primary species
concentrations, SOEM required 97 CPU s simulation cell�1

simulation h�1 on a 466 MHz processor (Kleeman and
Cass, 2001).
Despite the above progress an accurate and computa-
tionally efficient general technique for studying source
contributions to PM in 3-D CTMs is still lacking. In this
work, we describe and test two versions of an apportion-
ment algorithm, the On-line Particulate Source Apportion-
ment (OPSA) algorithm and the off-line Particulate Source
Apportionment Technology (PSAT) algorithm. Preliminary
applications of the algorithm to quantify contributions of
different sulfur emission sources and regions to SO2 and
particulate sulfate concentrations and the sulfate size
distribution at various receptor areas are also presented.

2. Model description

The model used in these studies is PMCAMx, a regional
three-dimensional (3-D) Eulerian CTM. PMCAMx was
applied to a 3492�3240 km2 domain in the Eastern
United States for the period from 12–19 July 2001 using a
36�36 km2 grid resolution and 14 vertical layers extend-
ing up to 6 km. For gas-phase chemistry, the Carbon Bond
Mechanism version 4 (CB-IV) (Gery et al., 1989), which
simulates 34 gas and 12 radical species, was utilized and
the system of reaction rate equations was solved using the
chemical mechanism compiler (CMC) of Environ (2004).
CMC solves the differential equations describing gas-
phase chemistry using a hybrid approach: the equations
of species with short lifetimes (i.e., radicals) are replaced
by algebraic equations using the pseudo-steady state
approximation, the equations of the species with inter-
mediate lifetimes are solved using a second-order implicit
Runge–Kutta method and finally the equations for the
slow-reacting species are solved explicitly (Environ,
2004). For the aerosol calculations, 10 logarithmically
spaced size bins were used (ranging from 40 nm to 40 mm)
to represent the size distribution. The thermodynamic
bulk equilibrium approach and the internal mixture
approximation are used for the aerosol calculations
(Capaldo et al., 2000). Nucleation and coagulation were
not included in the model, because they have a negligible
impact on the PM mass concentrations and mass size
distributions simulated here. The meteorological inputs
were created using MM5 (Grell et al., 1995). The emissions
inventory used was the Base E inventory from the MRPO
(LADCO, 2003). Gaydos et al. (2007) and Karydis et al.
(2007) have evaluated PMCAMx performance for this
period against observed values. Gaydos et al. (2007) found
fractional errors smaller than 50% for sulfate, ammonium
and organic carbon and Karydis et al. (2007) reported
good agreement between predicted and observed tempor-
al PM concentration profiles in all four seasons with the a
fractional error of less than 50% and fractional bias of less
than 30% for the July 2001 time period used in this work.

3. Source apportionment algorithm description

Current CTMs mix all emissions from different sources
together, resulting in the loss of information about
source contributions to pollutant concentrations. Source
apportionment requires splitting the pollutants from
different sources or locations and calculating pollutant
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Fig. 1. Information flow in OPSA for an example of two source classes

and the SO2–sulfate system.
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concentrations from each source class while maintaining
realistic computation times.

In CTMs like PMCAMx, simulation of atmospheric
transport consumes approximately 10% of the computa-
tion time while gas-phase chemistry and aerosol dy-
namics consume the remaining 90% of the time. Since the
advection and turbulent dispersion equations are a system
of non-coupled, non-numerically stiff differential equa-
tions, the computational requirements for their solution
scale approximately linearly with the number of species
(Colella and Woodward, 1984). On the other hand, the
computation requirements for the dynamic aerosol
calculations (e.g., condensation/evaporation) increase
super-linearly with the number of species because the
corresponding differential equations are coupled and
numerically stiff. As a result, maintaining reasonable
computational demands requires minimal increases in
the number of equations in the aerosol calculations.

The source apportionment task for PM is simplified by
linking all secondary PM components directly to a specific
precursor gas species (e.g., particulate sulfate to SO2,
nitrate to NOx, secondary organic aerosol to the corre-
sponding VOC precursors), for this reason, the proposed
algorithm does not account for indirect effects such as an
increase in nitrate concentrations that can result from
sulfate reductions. Algorithms that study the sensitivities,
rather than contributions, such as DDM can be used to
determine these indirect impacts. The proposed algorithm
is based on the fact that all molecules of a particular
species have the same probability of reacting at a given
location and time regardless of their source (e.g., SO2

emitted by power plants reacts identically to SO2 emitted
by oil-refining facilities at a given point and time).
PMCAMx, like many CTMs, utilizes operator splitting and
we are able to exploit the separation of the different
processes by developing a source apportionment algo-
rithm that treats apportionment separately for each
process. The algorithms proposed here require splitting
of the emissions from the gas-phase chemistry in the
operator splitting scheme.

3.1. On-line particulate source apportionment (OPSA)

algorithm

The OPSA algorithm treats each source specific species
separately during the emissions, transport, wet and dry
deposition calculations but combines them into one
species before the gas-phase chemistry and aerosol
calculations. In order to track these separate sources, the
emissions from the sources of interest must be separated
out in the emissions processing step before they are input
into the model. This will often require reprocessing of the
input emissions. The flow of information in the algorithm
in PMCAMx is shown in Fig. 1 using SO2 and sulfate as an
example.

3.2. Treatment of gas-phase reactions

The treatment of gas-phase reactions is the same as in
the Ozone Apportionment Technology (OSAT) described
by Dunker et al. (2002) and has been modified for the
reactions that are relevant to PM formation. In order to
explain the treatment of gas-phase reactions let us first
consider the case of gas A reacting to form gaseous species B

AðgÞ þ oxidant! BðgÞ þ other products

Since the apportionment of the precursor gas does not
change as a result of gas-phase chemistry, the concentration
of species A from any source after the gas-phase chemistry
time step would be given by

cA;iðt þ DtÞ ¼ cA;iðtÞ þ cT
Aðt þ DtÞ � cT

AðtÞ
� � cA;iðtÞ

cT
AðtÞ

" #
(1)

where cA,i(t+Dt) and cA,i(t) are the concentrations of species
A from a given source at the end and the beginning,
respectively, of the gas-phase chemistry time step and
cA

T(t+Dt) and cA
T(t) are the corresponding total concentrations

of species A.
Molecules of A from all sources have the same

probability of reacting; therefore, in a time step Dt the
concentration of B produced from A from source i will be
proportional to the total B produced during the time step,
cB

T(t+Dt)�cB
T(t), and the fraction of A coming from source i,

cA,i(t)/cA
T(t), in the beginning of the time step. As a result of

this, the concentration of species B from any source after
the gas-phase chemistry time step will be given by

cB;iðt þ DtÞ ¼ cB;iðtÞ þ cT
Bðt þ DtÞ � cT

BðtÞ
� � cA;iðtÞ

cT
AðtÞ

" #
(2)

where cB,i(t+Dt) and cB,i(t) are the concentrations of
species B from a given source at the end and the
beginning, respectively, of the gas-phase chemistry time
step; cB

T(t+Dt) and cB
T(t) are the corresponding total

concentrations of species B from all sources. One assump-
tion inherent in this approach is that each product can be
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linked to one of the precursor gases. Eqs. (1) and (2) are
applied to the apportionment of H2SO4(g) from SO2,
HNO3(g) from NOx and different condensable vapors from
the corresponding VOC precursors. Use of the above
approach also requires splitting of the addition of
emissions from the gas-phase chemistry calculations.

3.3. Treatment of irreversible partitioning

The apportionment of condensing non-volatile PM
material (e.g., sulfate and non-volatile SOA components)
after the partitioning calculations is similar to that
described above for gas-phase species after gas-phase
chemistry calculations. So, for the general condensation of
a non-volatile gaseous species

BðgÞ ! CðpÞ

where C is the particulate form of B (e.g., sulfate and
sulfuric acid). The apportionment of the precursor gas
does not change due to the transfer of B to the particulate
phase. The concentration of the remaining precursor gas
species B from source i is given by

cB;iðt þ DtÞ ¼ cB;iðtÞ þ ½c
T
Bðt þ DtÞ � cT

BðtÞ�
cB;iðtÞ

cT
BðtÞ

" #
(3)

Similarly to the case of gas-phase chemistry, the
concentration of the secondary particulate species (C) is
then based on the apportionment of the precursor gas
species and is given by

cC;iðt þ DtÞ ¼ cC;iðtÞ þ ½c
T
Cðt þ DtÞ � cT

CðtÞ�
cB;iðtÞ

cT
BðtÞ

" #
(4)

where cC,i(t+Dt) and cC,i(t) are the concentrations of
species C from source i at the end and the beginning,
respectively, of the gas-phase chemistry time step;
cC

T(t+Dt) and cC
T(t) are the corresponding total concentra-

tions of species C from all sources.

3.4. Treatment of reversible partitioning

A different approach is used for apportioning semi-
volatile species (e.g., semivolatile secondary organic
aerosol, ammonium nitrate, ammonium chloride) after
partitioning calculations than for non-volatile species
(e.g., sulfate) due to the simultaneous condensation and
evaporation. Since this version of PMCAMx uses a
thermodynamic equilibrium assumption for the partition-
ing calculations, only the net amount transferred between
the gas and particulate phase is known. We assume that
because the characteristic time for equilibrium is much
less than the time step in the model, the apportionment in
the two phases will be equal. This is equivalent to
assuming that molecules of a compound from a given
source will have the time to distribute themselves
proportionally between the two phases. The error intro-
duced by this assumption will be examined in a
subsequent section. For a semi-volatile gas (B) condensing
to form secondary aerosol (C)

BðgÞ2CðpÞ
the fractions of B and C from source i would be equal to
each another and also equal to the apportionment of the
sum of B and C before the partitioning calculations. The
concentration of B and C attributed to source i after
partitioning calculations are then given by

cB;iðt þ DtÞ ¼ cT
Bðt þ DtÞ

cB;iðtÞ þ cC;iðtÞ

cT
BðtÞ þ cT

CðtÞ

 !

cC;iðt þ DtÞ ¼ cT
Cðt þ DtÞ

cB;iðtÞ þ cC;iðtÞ

cT
BðtÞ þ cT

CðtÞ

 !
(5)

3.5. Treatment of common products of two precursors

Occasionally there is the case where two precursors
will produce the same oxidation product. A generalized
example of this is

AðgÞ þ oxidant! CðgÞ þ other products

BðgÞ þ oxidant! CðgÞ þ other products

The apportionment of C can then be determined by
weighting the apportionment of A and B by the corre-
sponding reaction rates. The appropriate weighting factors
would be

aA ¼
rA!C

rA!C þ rB!C

aB ¼
rB!C

rA!C þ rB!C
(6)

where rA-C and rB-C are the rates for the corresponding
reactions. The apportionment of C would then be based on
the weighted combination of the apportionment of A and B:

cC;iðt þ DtÞ ¼ cC;iðtÞ þ ½c
T
Cðt þ DtÞ � cT

CðtÞ� aA
cA;iðtÞ

cT
AðtÞ
þ aB

cB;iðtÞ

cT
BðtÞ

" #

(7)

We must also consider the case of two precursors reacting
with one another to form a single product of interest, such
as the generalized example:

AðgÞ þ BðgÞ ! CðgÞ þ other products

An example of this case is the formation of N2O5

from NO3 and NO2. This case is treated in much the
same manner as above with both a’s equal to 0.5 since
rA-C ¼ rB-C in this case.

A similar case is that of two precursors reacting to form
two products, such as:

AðgÞ þ BðgÞ ! A0ðgÞ þ B0ðgÞ

Examples of this type include the oxidation of organic
vapors by NO3 forming another organic compound and
nitric acid. This case is treated similarly to that of one
precursor reacting to form one product where each
product is matched with a precursor.

3.6. Off-line particulate source apportionment technology

(PSAT) algorithm

The off-line PSAT algorithm uses the same equations as
OPSA but simplifies the treatment of the apportionment
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Fig. 2. Information flow in PSAT for an example of two source classes and the SO2–sulfate system.

Fig. 3. The emissions of SO2 from (a) power plants and (b) all other

sources in mole s�1.
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during the transport and removal calculations. A diagram
outlining the information flow in PSAT is shown in Fig. 2
for the SO2/sulfate example. PSAT, unlike OPSA, uses the
apportionment of the upwind grid cell to apportion
species after transport calculations instead of tracking
the source specific species separately. The apportionment
of the newly transported A in a cell is based on the
apportionment of A in the upwind grid cell and the fluxes
of chemical species between cells as in OSAT (Dunker
et al., 2002):

cA;iðt þ DtÞ ¼ cA;iðtÞ þ Dcin �
c�A;iðtÞ

c�TA ðtÞ

" #
� Dciout

�
cA;iðtÞ

cT
AðtÞ

" #

(8)

where Dcin is the concentrations transported into the grid
cell, Dcin is the concentration transported out of the grid
cell, cA,i

*(t) is the concentration of species A from source i

in the upwind grid cell and cA
*T(t) is the total concentration

of species A from all sources in the upwind grid cell. Since
operator splitting in PMCAMx treats advection in the east-
west and north-south directions separately, there will be a
separate upwind grid cell in each of the two directions.
The resulting algorithm runs alongside PMCAMx with the
PMCAMx modules sending the flux values for transport
and the removal rates to the apportionment algorithm
where the actual source tracking takes place.

4. Evaluation of OPSA

As an initial implementation and test both algorithms
were applied to the case of SO2 reacting and condensing to
form particulate sulfate focusing on two source classes,
power plants and all remaining sources. Fig. 3 shows the
spatial variation of the SO2 emitted from power plants and
emitted from all other sources. The domain average
contribution to emissions from power plants was 77%.
Large amounts of SO2 are emitted from coal-burning
power plants along the Ohio River Valley and north-
eastern coast. There are a considerable number of non-
power plants SO2 sources in south-eastern Texas and the
West Virginia panhandle. PMCAMx with the OPSA algo-
rithm is used to calculate the source contributions to SO2
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and particulate sulfate. The results were tested for mass
balance against the base case. The predicted total SO2

(sum of SO2
Power Plants and SO2

Other) on a cell-by-cell basis
agreed with the base case to within 0.1 ppb and the
particulate sulfate agreed within 0.05 mg m�3. For SO2,
99.9% of the OPSA predicted values were within 10% of the
base case, 99.6% were within 5%, and 86% were within 1%.
For particulate sulfate, all of the OPSA predicted values
were within 10% of the base case, 99.97% were within 5%,
and 80% were within 1%. The domain-wide error was 0.3%
for SO2 and 0.5% for particulate sulfate. The slight
differences are likely caused by errors through numerical
diffusion.

The error introduced by the assumption regarding the
partitioning of semi-volatile compounds was tested by
comparing the apportionment of SOA given by OPSA with
that of a simulation tracking the source specific species
separately throughout the model (similar to but not the
same as SOEM because the aerosols are still internally
mixed), a more accurate but computationally expensive
approach. Both methods in this comparison use the bulk
equilibrium assumption for partitioning calculations. For
the purpose of this test, four organic precursors and four
corresponding SOA species were used. Four cases were
tested and for each case all the species were given
identical physical properties (respectively): molecular
weights of 150, 150, 150 and 180 g mol�1; saturation
concentrations of 0.023, 0.674, 0.007 and 0.008 mg m�3

(at 281 K); and enthalpies of vaporization of 156, 156, 0
and 0 kJ mol�1. While this will not give concentrations that
are equivalent to what we would expect in the atmo-
sphere, it will allow us to test the ability of our
assumption to represent the partitioning of semi-volatile
species. The actual SOA calculations in PMCAMx use four
SOA classes with different physical properties. The SOA
fraction is the fraction of the total SOA that each SOA
species represents. The comparison of the SOA fraction
Fig. 4. Comparison of predicted SOA fractions from OPSA and a simulation tra

sources. There are approximately 35,000 data points in the above comparison.
predicted by the two approaches on a cell-by-cell basis is
shown in Fig. 4 for test case #1. A 99.5% of the cells had
OPSA SOA fractions within 10% of the value predicted by
tracking the species separately, 99.1% were within 5% and
97% were within 1%. The root-mean-square error of the
predicted SOA fraction is below 0.0002. The remaining
three test cases showed even better agreement than the
case above. These small differences suggest that our
assumption (see Eq. (5)) about the partitioning of the
semi-volatile aerosol components introduces small errors
in a range of cases.

The implementation of OPSA to the case of the two SO2

and particulate sulfate sources resulted in a 2% increase in
CPU requirements while the use of PSAT resulted in an
increase of less than 1%. The base model requires
approximately 0.006 CPU s simulation h�1 cell�1 at
1.2 GHz. Tracking 10 sources using OSPA requires approxi-
mately 0.012 CPU s simulation cell�1 simulation h�1, while
an existing algorithm like SOEM that uses practically no
simplifying assumptions requires more than 97 CPU
s simulation cell�1 simulation h�1 on a 466 MHz processor
to track the same 10 source categories (Kleeman and Cass,
2001). It is also important to note that the underlying
model with SOEM uses few simplifying assumptions
compared to PMCAMx with PSAT (e.g., simulates mass
transfer instead of assuming equilibrium).
5. Evaluation of PSAT

Since the piecewise parabolic method (PPM) (Gery
et al., 1989) advection scheme with monotonic adjust-
ments used in PMCAMx is a second-order scheme and the
PSAT apportionment algorithm is linear, it is necessary to
test its ability to adequately represent apportionment
changes due to advection. This testing can be performed
by comparing the results of PSAT against that of the more
cking each SOA source-related species separately for four different SOA
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accurate OPSA. For this test we once more use the SO2/
sulfate system studying power plants and all remaining
sources.

Fig. 5 shows the comparison between the apportion-
ment result from OPSA and PSAT for SO2 and particulate
sulfate on a cell-by-cell basis. For the SO2 99.8% of the
PSAT predicted values fell within 10% of the values
predicted by OPSA, 98% fell within 5%, and 75% fell within
1%. For particulate sulfate 99.4% of the PSAT predicted
values fell within 10% of the value predicted by OPSA,
99.4% fell within the 5%, and 76% fell within 1%. The
domain-wide errors for SO2 and particulate sulfate
fractions are 0.16% and 0.15%, respectively, and the biases
are 0.0012 and 0.0011, respectively. These relatively small
differences throughout the domain suggest that the errors
introduced in PSAT by the non-linearity of the advection
algorithm are negligible in most cases. These small errors
Fig. 5. Comparison between PSAT and OPSA predictions for the SO2 and PM

approximately 8000 data points in the above comparison.
are a good trade-off for the gain in computation time and
simplicity of implementation (outside PMCAMx). PSAT is
used for further applications in this paper.
6. Results

The concentrations of SO2 and particulate sulfate
attributed to power plants and other sources are shown
in Fig. 6. The model predicts high concentrations of SO2

from power plants along the Ohio River Valley and the
north-eastern coast (Fig. 6a). There are also areas of high
SO2 concentrations from non-power plant sources (e.g.,
chemical manufacturing and oil refining) in the West
Virginia panhandle, east Texas and Chicago (Fig. 6b). Areas
with high SO2 concentrations from power plants also have
high particulate sulfate concentrations from the same
2.5 sulfate fractions resulting from power plant emissions. There are
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Fig. 6. Average concentrations of SO2 and PM2.5 sulfate contributed by power plants and other sources: (a) SO2 from power plants (ppb), (b) SO2 from

remaining sources (ppb), (c) PM2.5 sulfate from power plants (mg m�3) and (d) PM2.5 sulfate from remaining sources (mg m�3).
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sources. There are also areas where power plants con-
tributed substantially to particulate sulfate levels during
the test period (e.g., Wisconsin, Kansas, Nebraska, Oklaho-
ma and Alabama) even though there are few power plants
in the immediate vicinity (Fig. 6c). This can be attributed to
the long-range transport of pollutants into these areas from
areas with larger numbers of power plants.

Fig. 7 shows the fraction of SO2 and PM2.5 sulfate that
were attributed to SO2 from power plant emissions for this
test period. A large fraction of SO2 in Maine, New
Hampshire and Vermont is attributed to power plants
(up to 95%) as a result of the prevailing winds from the
Ohio River Valley and New England coastal areas. A small
fraction (as low as 10%) of the SO2 in much of Texas is
attributed to power plants, with SO2 resulting instead from
the refineries and chemical industries along the Texas
coast. Lower fractional contributions of power plant
emissions to SO2 are also seen in the West Virginia
panhandle, the South Carolina coast and eastern Tennes-
see/western Virginia due to extensive chemical processing
in these areas. The source apportionment for particulate
sulfate shows that SO2 emitted from power plants can
contribute significantly to particulate sulfate in areas far
removed from large power plants and the effects of power
plant emissions on particulate sulfate are more distributed
than the effects on SO2 (Fig. 7). While SO2 emitted from
power plants has little impact on the SO2 concentrations in
areas such as Texas and the West Virginia panhandle, these
emissions still contribute significantly to the particulate
sulfate concentrations in these areas. The overall average
contribution of power plant emissions to ambient concen-
trations of SO2 and particulate sulfate are 76% and 77%,
respectively, similar to their emissions but, on the other
hand, their spatial pattern is quite different.

As an initial application of the ability of PSAT to
track the contributions from source regions, the impact of
SO2 emissions from the Chicago, IL–Gary, IN area (the
region shown in Fig. 8) was studied for the period from
12–19 July 2001. The average concentration of SO2

originally from this source region is shown in Fig. 9a.
The Chicago SO2 emissions for this period influence the
neighboring areas (within a radius of approximately
100 km) but the particulate sulfate produced from these
emissions can be transported over a much wider area
(Fig. 9b). While winds transport SO2 into the surrounding
areas, it also reacts to form particulate sulfate which
can then be further transported (it has a relatively long
lifetime) having a wider impact in the domain signifi-
cantly impacting areas as far as 500 km from the source
region.



ARTICLE IN PRESS

Fig. 7. Percentage of (a) SO2 and (b) PM2.5 sulfate attributed to power

plants for the July 2001 simulation period.

Fig. 8. The Chicago, IL-Gary, IN region source area used for the PSAT

simulations.

Fig. 9. The average concentration of SO2 (a) in ppb and PM2.5 sulfate (b)

in mg m�3 resulting from SO2 emissions from the Chicago, IL-Gary, IN

region for the period of 12–19 July 2001.
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Fig. 10 shows the size-resolved apportionment
for particulate sulfate in Pittsburgh, PA and Houston, TX
for this 12–19 July 2001-time period. In Pittsburgh,
approximately 65–80% of sulfate in all size bins is the
result of power plant emissions. In Houston, the appor-
tionment is more varied across the size distribution as a
result of the large number of non-power plant sources
(mainly refineries) in the vicinity of the city and the more
distant power plants. The higher contributions of power
plant sources to the larger size bins are explained by the
transport of PM into the region from regions where power
plants have a greater impact. These larger particles have
on average been in the atmosphere for a longer time. This
illustrates an interesting link between the size distribu-
tion of the particulate sulfate from each source and the
location of the source.
7. Conclusion

Both OPSA and PSAT are computationally efficient and
predict the same total concentrations as the original
model. PSAT was found to be more computationally
efficient and simpler to implement. PSAT provides a
convenient platform for the study of pollutant transport
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Fig. 10. The size-resolved apportionment in Pittsburgh, PA (a) and

Houston, TX (b). The numbers above each size bin are the percentage of

particulate sulfate attributed to power plants in that particular size bin.
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and source contributions on regional scales. It can be used to
study the impact from different source regions and source
classes on the air quality in locations that are far removed
from the original sources. The implementation of PSAT into
CTMs such as PMCAMx also allows for the tracking of
apportionment throughout the size distribution.

The design of PSAT allows for a large amount of flexibility
in what can be tracked. Since the sources are separated
before the simulation starts, the limits of what can be
tracked depend on the software used to develop the
corresponding emissions inventories. While this application
used the CB-IV mechanism and sulfur dioxide and sulfate as
examples, PSAT can be applied to all PM components and to
other chemical mechanisms such as SAPRC.
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