CANX Particulates Toxics

Ozone

Modeling System Overview

TOPICS

- Atmospheric Dispersion Models
- CAMx v7 Overview
 - Features
 - Input/Output
 - Technical Formulation
 - Probing Tools
 - Computer Resources

CANX Particulates Toxics

Ozone

Atmospheric Dispersion Models

DISPERSION MODELS Overview

- All dispersion models solve some form of the "continuity equation"
 - A source-oriented "deterministic" or predictive method
 - Contrast to receptor-oriented "statistical" or diagnostic models
- Simulate how pollutant concentrations evolve in time/space from:
 - Emissions (sources)
 - Dispersion
 - Advection (transport by mean/resolved wind)
 - Turbulent diffusion (mixing by unresolved motion)
 - Chemical reactions (production/destruction)
 - Deposition (removal)

DISPERSION MODELS Defined by Frame of Reference

- Lagrangian: coordinate system follows air parcels
 - <u>Plume and puff models</u>: presume Gaussian concentration patterns
 - Plume coherency limits applicability, some non-physical consequences
 - Simple, less expensive
 - AERMOD, CALPUFF, SCIPUFF

DISPERSION MODELS Defined by Frame of Reference

- Eulerian: coordinate system is fixed in space
 - <u>Grid models</u>: no presumed concentration patterns, but pixelated results depend on grid resolution
 - Pollutants move consistently with resolved flow patterns
 - Complex, more expensive
 - CAMx, CMAQ, WRF-Chem

DISPERSION MODELS Eulerian Models – Advantages

- More realistic, comprehensive, explicit treatment of many processes:
 - Numerous emission types/sources
 - Complex meteorology
 - Complex non-linear chemistry
 - Multi-pathway pollutant removal
- Wide range of scales and applicability
 - Urban to global

DISPERSION MODELS Eulerian Models – Limitations

- Data intensive
 - Meteorology, emissions, initial/boundary conditions
 - Output can be complicated, non-intuitive to interpret
- Grid resolution
 - Affects accuracy, speed, data volume
 - Parameterized sub-grid processes
- Sophisticated numerical treatments
 - Operator splitting
 - Complex solvers affect model speed

- Applications require
 - >Ample computing resources
 - >Ample time investment
 - >Ample knowledge/understanding

• Remedies

- Parallelization over multiple CPUs
- "Smart" solver technologies
- ≻Grid nesting/Plume-in-Grid
- ➢ Probing Tools

CAMX Ozone Particulates Toxics

Ozone

Features

CAMx v7 FEATURES

- Regional tropospheric photochemical grid model
 - Multiple gas-phase chemical mechanisms
 - Comprehensive aerosol treatment
 - Mercury and toxics
- Large range of applicable scales:
 - \bullet Nested grids extend scales from ${\sim}1$ to 1000's km
 - Individual point sources plumes (<< 1 km) via Plume-in-Grid
- Flexible "off-line" model
 - Meteorological and emission inputs derived from other models

90 80

75 70

65 60

55 50

40

ppb

CAMx v7 FEATURES

- Contemporary peer-reviewed algorithms
- Computationally and memory efficient
 - Parallelization: shared (OMP) and distributed (MPI) memory
 - Either or both can be used
- Flexible, but for experienced Linux users
- Well-vetted history
 - US EPA, States/municipalities, stakeholders, global user base
 - Extensive scientific publications on CAMx applications
- Freely available to the public (<u>www.camx.com</u>)

CAMx v7 FEATURES

- 2-way or 1-way grid nesting
 - "Flexi-nesting": introduce/remove nested grids anywhere, any time
- Multiple map projections
 - Lambert, Polar, Mercator, UTM, Geodetic (latitude/longitude)
- Two advection options (PPM, Bott)
- Two dry deposition options (Wesely, Zhang)
- Plume-in-Grid (PiG) sub-model
 - Two chemistry options (reduced NOx- O_3 + PM mechanism, full gas-phase mechanism)
- Surface chemistry/re-emission model
 - User-defined heterogeneous chemistry on soil, vegetation, snow

CAMx v7 FEATURES Probing Tools

- Source Apportionment Technology (SAT)
 - Track attribution of ozone and PM to emissions by category and region
- Decoupled Direct Method (DDM, HDDM)
 - Track chemical sensitivity to emissions and other parameters by category and region
- Process Analysis tools (IPR, IRR, CPA)
 - Additional process-specific information helps explain model predictions
- Reactive Tracer sub-model (RTRAC, RTCMC)
 - Run additional gas and PM species (toxics) with separate chemistry

CANX Ozone Particulates Toxics

Ozone

Input/Output

RAMBOLL

CAMx v7 MODELING SYSTEM

RAMBOLL

CAMx v7 INPUT/OUTPUT Formats

- NetCDF formats for gridded model input and output files
 - NetCDF3 is traditional, uncompressible
 - NetCDF4 uses HDF5 data compression (conserves disk space)
 - Models/programs using NCF4 automatically read/write compressed files
 - No need to un-compress separately!
- Uncompressed CAMx netCDF I/O is compatible with EPA's Models-3 I/O-API convention
- CAMx allows mix of traditional Fortran binary and netCDF input files
- User can select traditional Fortran binary or netCDF output files

CAMx v7 INPUT/OUTPUT Meteorology and Environmental Inputs

- Define state of the atmosphere and surface
 - 2D land cover, LAI, topography, snow cover
 - 3D wind, temperature, pressure, humidity, clouds, rain, turbulent diffusion rates
 - 3D vertical grid structure
- Pre-processor tool available to interface with the WRF meteorological model

CAMx v7 INPUT/OUTPUT Emission Inputs

- Gridded surface emissions
 - Mobile, area, biogenic, etc.
 - Multiple input files by sector
- Gridded 3-D emissions
 - Aircraft, wildfire, lightning, etc.
 - Multiple input files by sector
- Elevated point emissions
 - Large industrial stacks or sources with plume rise
 - Model-calculated or user-specified plume rise by source
 - Multiple inputs file by sector

CAMx v7 INPUT/OUTPUT Other Inputs

- Initial conditions define initial state of the atmosphere at the start of a simulation
- Boundary conditions define pollutant fluxes into the domain from the lateral and top boundaries
 - Pre-processors available for global model downscaling
 - GEOS-Chem, MOZART/WACCM/CAM-Chem
 - Hemispheric CAMx (H-CAMx)
- Clear-sky photolysis rates and total atmospheric ozone column
- Chemistry parameters file defines species and reaction mechanisms

CANX Ozone Particulates Toxics

Ozone

Technical Formulation

TECHNICAL FORMULATION Computational Grids

- "Master" and "nested" grids
 - All nests defined relative to master
 - Arbitrary mesh factors allowed (2, 3, 5, etc.)
 - **BUT** telescoping grids must have lowest common denominator
 - Nests need internal "buffer" cells to hold boundary conditions

TECHNICAL FORMULATION Computational Grids

- Terrain-following vertical height coordinate
 - Usually based on met model structure (WRF)
 - Time-varying structure allowed
 - No vertical nesting

• Grid cell arrangement

RAMBOLL

- Variables are "staggered"
- Most are carried at cell center and represent cell averages
- Transport fluxes are carried at cell edges

TECHNICAL FORMULATION Transport

- Horizontal advection solver options:
 - Bott (1989): area-preserving flux-form solver
 - Colella and Woodward (1984): piecewise-parabolic method
- Vertical advection solved with centered hybrid implicit scheme (Emery et al., 2011)
 - Accounts for time-varying layer structure
 - Maintains mass conservation/consistency
 - Reduces numerical diffusion

RAMBOLL

TECHNICAL FORMULATION Transport

- Horizontal diffusion solved with explicit scheme
 - 2-D simultaneous (Smagorinsky, 1963)
- Vertical diffusion (2 options):
 - Standard K-theory solved with implicit scheme
 - ACM2 (Pleim, 2007) non-local convection solved semi-implicitly
 - Dry deposition flux used as surface boundary condition

TECHNICAL FORMULATION Gas-Phase Photochemistry

- Ozone, NOx, VOC, CO, halogens, CH₄, inorganic and organic radicals and products
- Gas-phase mechanisms currently supported:
 - CB05 (Yarwood et al., 2005)
 - CB6r2h (Yarwood et al., 2014)
 - CB6r4 (Emery et al., 2015, 2016, 2019)
 - SAPRC07TC (Carter, 2010, Hutzell et al., 2012)
- TUV pre-processor generates lookup table of clear-sky photolysis rates
 - Dimensions include zenith angle, altitude, ozone column, surface albedo
 - Cloud/aerosol adjustments applied within CAMx

TECHNICAL FORMULATION Aerosol Chemistry

- Primary elemental/organic carbon, dust, sea salt, elemental metals and cations
- Secondary sulfate, nitrate, ammonium, chloride, organic aerosols
- Chemical treatments:
 - Aqueous sulfate, nitrate, SOA chemistry (Chang et al., 1987; Ibusuki and Takeuchi, 1987; Martin and Good, 1991; Jacobson, 1997; Ortiz-Montalvo et al., 2012; Lim et al., 2013)
 - Chemistry and partitioning among organic gases and aerosols: SOAP (Strader et al., 1999) or the Volatility Basis Set (Koo et al., 2014)
 - Partitioning among inorganic acids, cations and aerosols: ISORROPIA (Nenes et al., 1998, 1999) or EQSAM (Metzger et al., 2016)
 - Modal (CF) and sectional (CMU) size treatments

TECHNICAL FORMULATION Pollutant Removal

- Dry deposition
 - Deposition velocity depends on surface type and seasonal characteristics
 - Resistance model analogous to an electric circuit
 - Wesely (1989), Slinn and Slinn (1980)
 - Dependencies include: season, land cover, solar flux, surface stability, surface wetness, gas solubility and diffusivity, aerosol size
 - Zhang (2001, 2003)
 - Resistances include dependence on Leaf Area Index (LAI) and snow cover
 - Default LAI set according to landuse; can be adjusted according to satellitederived LAI

TECHNICAL FORMULATION Bidirectional Ammonia Deposition/Emission

- "BiDi" algorithm of Zhang et al. (2010)
 - Implemented within CAMx Zhang dry deposition function
- Assigns NH₃ "emission potentials" by land cover type (Whaley et al., 2018)
 - Define temperature-dependent compensation points along circuit
 - Determine direction and magnitude of the net NH_3 flux

TECHNICAL FORMULATION Pollutant Removal

- Wet scavenging
 - First order removal rate based on scavenging coefficient (Seinfeld and Pandis, 1998)
 - Gas rates depend upon solubility and diffusivity
 - Aerosol rates depend upon size and density
 - Separate rates determined for in-cloud and below-cloud processes, rain vs snow

DISPERSION MODELS Plume-in-Grid (PiG)

- Incorporates Lagrangian puff treatment into grid model framework
- Explicitly addresses point source plume-scale dispersion and chemistry
 - Overcomes grid scale limitations
- Provides practical advantages of Lagrangian methods
 - Removes shape limitations at large scales by transferring plume mass to grid when adequately resolved downwind
 - Allows cost effective application from plume to regional scales

TECHNICAL FORMULATION Plume-in-Grid (PiG)

- GREASD PiG (fast chemistry):
 - Early inorganic NOx-O₃ chemistry from large NOx sources
 - Works with PM and SAT
 - Does not work with other Probing Tools
- IRON PiG (*slow* chemistry):
 - Full gas-phase photochemistry
 - Incremental chemistry relative to grid concentrations
 - No PM
 - Works with RTRAC
 - Does not work with other Probing Tools

TECHNICAL FORMULATION Surface Model

- Deposition/Chemistry/Re-emission
 - Uses deposited mass from dry deposition module
 - User-selected species and heterogeneous chemical reactions/rates
 - Re-emits volatile products back to atmosphere

CANX Ozone Particulates Toxics

Ozone

Probing Tools

PROBING TOOLS

Source Apportionment Technology (SAT)

- Apportions simulated ozone and PM to emissions and initial/boundary conditions
 - Emissions can be split by source region and/or source category
 - Apportionment provided throughout the modeling domain
- Tracks precursor emissions (NOx, SO₂, NH₃, VOC, primary PM) $\frac{2}{3}$
- Tracks secondary products (O₃, SO₄, NO₃, NH₄, SOA)
 - Can choose which species groups to track: ozone, sulfur, nitrogen, organics, primary PM, Hg
- Associates ozone/PM production with precursors present when formed – SAT is tied into the model's chemical mechanism
- Distinguish ozone production under NOx and VOC sensitive conditions accounts for non-linear photochemistry

PROBING TOOLS Source Apportionment (SA)

- Source Apportionment is **NOT** Sensitivity
 - SA *can* identify what precursors participated in ozone/PM production in a specific chemical environment or scenario (culpability)
 - SA is *limited* for predicting responses to precursors controls when chemical responses are non-linear
- Alternate ozone apportionment methodologies:
 - OSAT: standard approach
 - APCA: attributes ozone production preferentially to anthropogenic (controllable) sources, such as when urban NOx and biogenic VOC combine to form ozone

PROBING TOOLS Decoupled Direct Method (DDM)

- Calculate 1st-order (DDM) and 2nd-order (HDDM) derivatives, or sensitivities
 - Sensitivity of a concentration output to an emissions or IC/BC input
 - PM: DDM only
 - Ozone: DDM or HDDM
 - Calculate many sensitivities at once
 - Emissions may be specified by region and/or category
- Applications
 - Estimate effects of emission changes in a single model run
 - Rank relative importance of source region/categories to ozone reduction potential, or other species

PROBING TOOLS Decoupled Direct Method (DDM)

- Sensitivity is **NOT** Source Apportionment
 - It *can* predict ozone response to precursor controls:
 - DDM: small-moderate (near-linear) changes
 - HDDM: larger (non-linear) changes
 - It is *limited* for source attribution (culpability) because sensitivities can be negative
- DDM is slower than SA, but:
 - Provides information for every species (not just ozone or PM components)
 - More flexibility in selecting which parameters to track

PROBING TOOLS Process Analysis (PA)

- Gather and report additional information on model processes
 - Chemistry, deposition, emissions, etc.
 - Over entire modeling grid or user-defined analysis domains
- Explain "how the model got the answer it got"
 - Requires post-processing to be useful
- Integrated Process Rate (IPR) mass budgets by each physical and chemical process
- Integrated Reaction Rate (IRR) detailed chemical rates reported by the mechanism
- Chemical Process Analysis (CPA) key chemical rates most important for diagnosing and evaluating chemical processing

PROBING TOOLS Process Analysis (PA) – Example from CPA

PROBING TOOLS Reactive Tracers (RTRAC)

- Add sets of independent reactive gas and/or inert particle tracers (e.g., air toxics)
 - Assumes reactive species have minimal impact on photochemistry
 - Each tracer can be "tagged" for source apportionment
- Tracers operate in parallel to the CAMx host model
 - Tracer decay/production driven by modeled oxidant levels and photolysis rates
 - "Recursive tracers" allow for several generations of products: secondary toxics
- Can use IRON PiG and sampling grid for "fenceline" dispersion calculations

1,3-Butadiene In Detroit, MI 0.10 110 0.07 0.05 0.03 0.00 ppbV

74

PROBING TOOLS Reactive Tracers (RTCMC)

- RTCMC allows RTRAC to treat more complex chemistry
 - Reads external mechanism from text file
 - Automatically builds mechanism for LSODE solver at model startup
 - Performs independent chemical integration
 - Complex non-linear interactions among tracers and CAMx "core" species
- Adds mechanism flexibility
- Removes need to code separate mechanisms by hand
- Tracer apportionment possible, depends on chemical complexity

CANX Ozone Particulates Toxics

Ozone

Computer Resources

COMPUTER RESOURCES Hardware and Software

- Modern Intel or AMD multi-core chipsets
 - Single servers or cluster environments
 - Fast networking among servers/nodes
 - High volume RAID for data I/O, hard drives for backup (TBs)
- Linux OS any distribution/version (MS Windows not supported)
- Fortran90 for Linux, supporting OMP:
 - Commercial: Intel, Absoft/OSX
 - Free: Portland Group, Sun/Oracle, Gnu Fortran
- 3rd party libraries
 - MPI: MPICH, OpenMPI, MVAPICH
 - NetCDF: v3 or v4/HDF5

COMPUTER RESOURCES Speed, Memory, Parallelization Scalability

- Depends on:
 - Number, sizes and resolution of grids
 - Chemistry mechanism/solver
 - Use of PiG and Probing Tools
 - Parallelization:
 - Larger/complex CAMx applications scale better because un-parallelized overhead processes (e.g., model setup, I/O, etc.) are small fractions of run time
 - Fast network (InfiniBand) and I/O (solid state drives) become important with many compute cores spread over many nodes such as in a cluster environment
 - We recommend using OMP and MPI in combination
 - Conduct tests to determine which OMP/MPI combinations work best for your application

COMPUTER RESOURCES Run Time Scaling, Example 1

- 24-hour simulation
- CAMx v6.4 with 3 nested grids:
 - 36-km (148x112), 12-km (149x110), 4-km (191x218), 28 layers
- CB6r4, no PM, no PiG, no Probing Tools
- Portland PGF90 v13.4, Intel IFORT v15.0 with OMP and MPICH v3.1.4
- 2.60 Ghz Intel Xeon chipset, 48 hyperthreaded cores

v6.4	PGF13.4			IFORT15.0		
MPIxOMP	Total	Factor	Scaling	Total	Factor	Scaling
1x1	7:16:41			6:29:43		
1x3	2:53:32	2.5	84%	2:34:35	2.5	84%
1x6	1:36:30	4.5	75%	1:27:38	4.4	74%
1x12	0:59:43	7.3	61%	0:54:52	7.1	59%
1x24	0:44:31	9.8	41%	0:44:40	8.7	36%
3x1	2:44:33	2.7	88%	2:22:18	2.7	91%
6x1	1:32:55	4.7	78%	1:22:48	4.7	78%
12x1	0:52:18	8.3	70%	0:47:25	8.2	68%
24x1	0:42:57	10.2	42%	0:40:10	9.7	40%
47x1	0:35:17	12.4	26%	0:34:09	11.4	24%
3x8	0:42:32	10.3	43%	0:35:01	11.1	46%
4x6	0:35:30	12.3	51%	0:33:40	11.6	48%
6x4	0:45:54	9.5	40%	0:33:13	11.7	49%
8x3	0:47:09	9.3	39%	0:33:58	11.5	48%
12x2	0:36:29	12.0	50%	0:33:27	11.7	49%

CAMX OVERVIEW

COMPUTER RESOURCES Run Time Scaling, Example 2

- 24-hour simulation
- CAMx v6.4, US EPA national modeling grid:
 - 12-km (225x225), 25 layers
- CB6r2 + CF aerosols, PiG for major point sources
- SAT (9 regions x 1 sector, Ozone, Sulfur, Nitrogen groups, 220 total tracers)
- EPA's HPC system (Atmos); combinations of OMP and MPI, and combinations of standard disk and solid state (RAM) I/O

CAMx WEBSITE http://www.camx.com

HOME ABOUT DOWNLOAD PUBLICATIONS CONTACT US

CAMx Ozone Particulates Toxics RAMBOLL ENVIRON

Comprehensive Air Quality Model with Extensions

A multi-scale photochemical modeling system for gas and particulate air pollution

Version 7.00 posted May 31, 2020

Go to CAMx Download

Why CAMx

- Simulate air quality over many geographic scales
- Treat a variety of inert and chemically active pollutants
 photochemical gases, particulates, mercury and toxics
- Conduct source attribution, sensitivity, and process analyses
- Apply distributed- and shared-memory parallelization

CAMx In Action...

Overview presentation of features and formulation

Visit our on-line library of papers and reports

